
Model-free Learning and Control in a Mobile Robot

Brandon Rohrer, Michael Bernard, J. Dan Morrow, Fred Rothganger, and Patrick Xavier
Sandia National Laboratories

Albuquerque, NM, USA

Abstract

A model-free, biologically-motivated learning and control
algorithm called S-learning is described as implemented in
an Surveyor SRV-1 mobile robot. S-learning demonstrated
learning of robotic and environmental structure sufficientto
allow it to achieve its goals (finding high- or low-contrast
views in its environment). No modeling information about the
task or calibration information about the robot’s actuators
and sensors were used in S-learning’s planning. The ability
of S-learning to make movement plans was completely
dependent on experience it gained as it explored. Initiallyit
had no experience and was forced to wander randomly. With
increasing exposure to the task, S-learning achieved its goals
with more nearly optimal paths. The fact that this approach
is model-free implies that it may be applied to many other
systems, perhaps even to systems of much greater complexity.

1. Introduction

S-learning is a general learning and control algorithm
modeled on the human neuro-motor system [2], [9], [10]. It
is model-free in the sense that it makes no assumptions about
the structure or nature of the system being controlled or its
environment. S-learning accomplishes this using previous
experience to help it select actions. This paper describes
the implementation of S-Learning in computer code and the
application of S-learning to a mobile robot.

1.1. Relation to Previous Work

Most approaches to robot control assume the existence of
an explicit system model, such as the changes that a motion
command will have on Cartesian or joint positions. The
majority of machine learning algorithms take the form of
a search in parameter space, with the underlying structure
of the space reflecting detailed knowledge of the system.
Other methods make a less constraining assumption: that
the vectors of state information occupy a metric space.
These include finite state machines [12], variants of dif-
ferential dynamic programming [8], [13], the Parti-game
algorithm [7], and probabilistic roadmaps [4]. But even this
seemingly benign assumption implies a good deal about the
system being modeled. It is violated by any sufficiently non-
smooth system, such as one containing hard-nonlinearities
or producing categorical state information.

There are still a number of algorithms that are similar to S-
learning in that they make no assumptions about the system
being learned and controlled. These include Q-learning [14],
the Dyna architecture [11], Associative Memory [5], and
neural-network-based techniques including Brain-Based De-
vices [6] and CMAC [1]. These approaches, together with S-
learning, can be categorized as reinforcement learning (RL)
algorithms, or solutions to RL problems. However, these all
assume a static reward function, where S-learning does not.

1.2. Dynamic Reinforcement Learning Problem
Statement

To be more precise, S-learning addresses a general class of
reinforcement learning (RL) problem, referred to hereafter
as the dynamic RL problem: how to maximize reward in
an unmodeled environment with time-varying goals. More
specifically, given discrete-valued action (input) and state
(output) vectors,a ∈ A ands ∈ S, and an unknown discrete-
time functionf , such that

st = f(ai≤t, si<t, t), (1)

(where the notationai≤t denotes the set of allai such that
i ≤ t) and a scalar reward,r, and known reward function,
g, such that

rt = g(si≤t, t), (2)

maximize the total reward over time:

V =
∞∑

i=0

ri (3)

Equation 3 shows an infinite-horizon formulation, but
finite- and receding-horizon variations of the dynamic RL
problem are similarly structured.

The dynamic RL formulation is relevant to a large class
of problems. It is applicable in instances where 1) the
model is unavailable and 2) the reward function varies with
time. Models may be unavailable for a number of reasons.
Systems may be too complex to model accurately with the
resources available. Also, systems may have characteristics
that vary with age, such as joint friction or tire pressure, or
may even have non-catastrohpic sensor and actuator failures.
Time varying reward functions are introduced whenever



the system’s goals are modified, as in response to an
operator command. Despite the importance of the dynamic
RL problem, no other published solutions exist. The nature
of the dynamic RL problem—that the only information
available is the robot’s action-state history—suits it wellto
an experience-based approach.

2. Method

S-learning operates by recording sequences of state-action
pairs. The resulting libraries contain a reduced version ofthe
system’s history, a system memory. The memory can then
be used to make predictions and guide the selection of the
system’s actions. When the system encounters a previously-
experienced state, it retrieves sequences beginning with that
state. The system can then re-execute the actions of recalled
sequences that are likely to result in an increased reward.

2.1. S-learning algorithm

S-learning handles state-action (s-a) pairs,σ. An ordered
sequence of state-action pairs is called asequence, φ, and
an unordered collection ofφ is a library, κ. Both φ and
κ may have any length of one or more, given bynσ

(number of state-action pairs) andnφ (number of sequences),
respectively.

An S-learning implementation can be broken into three
main function blocks: the Agent, the Environment, and the
Sequence Library. (Figure 1.)

Agent Environment

Sequence Library

Figure 1. Block diagram of S-learning. The Environment
represents the system dynamics, f , and the Agent
contains the reward function, g. The Sequence Library
is created from the time history of s-a pairs.

2.1.1. Environment. The Environment is the embodiment
of the system dynamics,f (Equation 1). It receives action
commands from the Agent and reports its state to the
Sequence Library and back to the Agent. In practice the
Environment may be a continuous-time system, as long as
it includes a means to execute discrete-time commands,a,
and to report discrete-time sensor information,s.

The formulation of the dynamic RL problem places no
constraints on the Environment. It may contain its own
internal control system, stochastic elements, and learning
capabilities. The Environment may do a large amount of pre-
processing on its sensor data and return highly-interpreted
information. Alternatively, it may return nearly raw sensor
data, binned and discretized in time. It may be physical or
simulated, and there are no explicit limits to the complexity
it can have.

2.1.2. Agent. The Agent contains the reward function,g,
and uses it to evaluate the plan candidates it receives from
the Sequence Library. It executes the plans it selects by
passing the corresponding actions to the Environment. The
procedure the Agent follows during its operation is outlined
below:

1) Define a target,τ , consisting of the most recentσ.
2) Query the Sequence Library for sequences that begin

with τ , φ(τ). The set of these formκ(τ), a collection
of candidate plans.

3) Select a plan to execute fromκ(τ):

a) Select the candidate plans that maximize the
expected reward,r, from the states that follow
τ in eachφ(τ).

b) If there are more than one of these, select the
shortest among them, that is, minimizenσ.

c) If there is still more than one candidate, ran-
domly select from among the remaining candi-
date plans such that a single plan,φ̂, is selected.

4) Execute the actions,a, associated with each element
of φ̂.

5) Return to step 1.

The Agent also passes copies of the actions it executes,
a, to the Sequence Library, so that it can assemble eacha-s
pair into aσ.

2.1.3. Sequence Library. The Sequence Library is at the
heart of S-learning. It allows S-learning to learn from its
experience, use new learning as it is gained, generalize
that learning to unfamiliar situations, make predictions,and
attain goals. It has two primary functions: to pass candidate
plans to the Agent and to record state space trajectories as
they are observed. Candidate plans,φ(τ) are selected on the
basis of whether they begin with the target subsequence,τ ,
passed in by the Agent. The set ofφ(τ), κ(τ), is returned to
the Agent. The process for recording newly observed states
in the library is described below.

Due to the fact that S-learning is an experience-based
learning algorithm, there is no distinction between memory
and learning. Both are accomplished by the storage of
sequences. As the Agent passes in actions,a, and the
Environment passes in output states,s, the Sequence Library
assembles them intoa-s pairs, σ. A working memory of



the most recently observed states is maintained. Sequences,
φ, of length nσ are stored in the library,κ. For φj that
begins with σi, φj+1 will begin with σi+1, that is, the
subsequent sequences overlap bynσ−1 states. Through this
accrual process,κ becomes the repository of the system’s
experience.

2.2. Robot implementation

The S-learning algorithm was coded in Java and demon-
strated with a Surveyor SRV-1 mobile robot (Surveyor
Corporation, San Luis Obispo, California, USA). The SRV-
1 is a tracked robot with a frontward-mounted color CCD
and a Bluetooth radio. (Figure 2) It is relatively small,
at 12 cm × 10 cm × 8 cm and weighs approximately
350 g. The onboard software that drives the robot is entirely
open source. Wireless communications with the robot were
accomplished via a software socket, with the robot acting
as server in a client-server architecture. The S-learning
algorithm was implemented in Java on a remote laptop
that received images from the robot’s camera and issued
movement commands.

Figure 2. The Surveyor SRV-1 robot.

The robot occupied a 102 cm× 72 cm room with black
walls 40 cm high and a black floor. In the center of each
wall was a white stripe 13 cm wide extending the height of
the wall. (Figure 3a) At each time step the robot returned
an image from its camera to the controlling computer.
(Figure 3b)

In order to interface with the S-learning algorithm, the
image was preprocessed and binned with a great reduction
in the information content. Anx-y coordinate system was
defined with the origin at the upper left corner of the
image, with the positivex direction down and the positivey
direction to the right. The height of the image wasxmax = h
and the width wasymax = w. The width-wise center strip of
the image fromh/4 < x < 3h/4 was partitioned into five
overlapping vertical strips, each with a width ofw/3 and

a)

b)

Figure 3. The room that served as the robot’s environ-
ment. a) Viewed from above. b) Viewed from the robot’s
camera.

an overlap ofw/6 with its neighboring strip(s). The average
pixel value in each strip was calculated by summing the
value for each of the red, green, and blue channels over all
the pixels in the strip and dividing by three times the number
of pixels, resulting and a value between 0 and 255.

Differences between adjacent strips were calculated by
subtracting their average pixel values and taking the absolute
value. This difference had a theoretical range of 0 to 255,
but because adjacent strips shared half their pixels, these
differences fell between 0 and 127. The four difference
values (∆1−∆4) provided a very rough representation of the
amount of contrast between different portions of the image.

2.2.1. Action-state pair vector, σ. The σ vector at each
timestep was composed of binary elements representing the
command issued and the sensory state after executing the
command. Each of the four difference values were binned
into 11 bins of width 23.2, covering the range from 0 to
255. The portion of the state vector corresponding to each
difference value consisted of 11 binary elements, with each
element corresponding to a bin. If an element’s bin contained
the sensed difference value at a particular time step, that bin
would be set to one, as would all bins corresponding to
lesser values. In this way, the visual information available
to S-learning was greatly reduced with only the minimum



necessary retained.
The action vector had four binary elements, corresponding

to forward, reverse, spin right, and spin left commands.
Non-zero elements indicated which commands were issued
at that time step.Forward and reversecommands typically
produced a linear motion of approximately 7 cm.Spin right
and spin left commands typically produced a rotation of
approximately 5 degrees. Simultaneousforward andreverse
commands produced no action, as did simultaneousspin
right and spin left commands. When both a rotational
and linear command were issued simultaneously, only the
rotational command was executed.

2.2.2. Reward. The goal of the system emerged from the
nature of the reward. A reward vector,ρ, was created with
the same length asσ, such that the total reward,rc, was
maximized by high-contrast visual fields. At each time step,
rc was calculated by multiplyingσ by ρ element-wise and
summing the resulting values. Sensory states were rewarded
or penalized by assigning higher or lower values ofρ. The
ρ vector used in the simulation was constructed to reward
high-contrast near the center of the image moreso than near
the edges. Theρ values corresponding to∆2 and ∆3 bins
were all set to 2, those corresponding to∆1 and ∆4 bins
were set to 1. In practice, thisρ maximized the reward when
a white strip was centered in the visual field and occupied
about 1/4 the image’s width. Also, a reward for low-contrast
images,rd, was derived by subtractingrc from a constant,
20.

2.2.3. Sequence library creation. At each timestep, the
action that was executed and the state that resulted from
that action were combined into a state-action pair,σ. The
sequence ofnmax

σ most recently observed sequences was
maintained, wherenmax

σ was the maximum sequence length,
a parameter manually set in software. As described above,
the longest sequence not in the library already (up to the
maximum sequence length) was added to the Sequence Li-
brary. Due to the simplicity of the system, all the information
necessary to make reasonably accurate predictions about
the system was available at each timestep. In this case a
maximum sequence length ofnmax

σ = 3 was sufficient. More
complex systems would benefit from a greaternmax

σ , as it
would be able to compensate somewhat for partial or noisy
state information.

As sequences were added to the library, they were as-
signed an initial strength value,106. At each timestep,
the strength was decreased by 1. The strength of each
sequence was multiplied by 10 after each repeat observation.
If strength ever decayed to 0, the sequence was dropped from
the library. This provided a mechanism for rarely observed
sequences to be forgotten. Due to its relatively short run
time, the robot did not make use of this feature in this
experiment, but it is a feature of S-learning that suits it

for use with more complex systems as well. It can also be
seen that after several repeated observations a sequence’s
existence in the library would be assured for the life of
the system. This is analogous to recording an experience
in long-term memory.

2.2.4. Action selection. The Agent referred to the Sequence
Library to help determine which action command to send at
each time step. All sequences that began with the most recent
state were used as a set of predictions. (The most recent state
might be contained in multipleσ’s, since several actions
may have resulted in that state in the system’s history.
Sequences beginning with allσ’s matching the most recent
state were returned.) Each sequence represented a possible
future. The Agent compared the reward at the final state
of each sequence to the reward at the initial state, and the
sequences with the greatest increase in reward were selected
as the most promising.

The actions pertaining to each sequence defined a plan.
By executing the actions in the same order, it was possible
to create the same sequence of states. However it was
not guaranteed to do so. Some state information, such
as distance to the walls, was not directly sensed and so
introduced some variability into the effects produced by a
given series of actions. The most promising sequences found
in the Sequence Library represented the best case scenarios
for each plan. In order to make a more informed decision,
the expected value of the final reward for each plan (up to
50 of them) was calculated in the following way.

The library was queried for all the sequences starting
from the most recent state and executing each plan. The
final rewards for the sequences executing a given plan
were averaged, weighted by the log of the strength of each
sequence:

r =

∑
i ri log (ωi + 1)∑

i log (ωi + 1)
(4)

where r is the weighted average reward andri is the
reward andωi is the strength associated with each sequence.
One was added toωi to ensure that the log remained non-
negative.

r represented the expected value of the reward a given
plan would produce. The plan with the highest value ofr
was selected for execution, given thatr was greater than the
reward at the most recent state.

2.2.5. Neighboring states. When S-learning’s prior expe-
rience did not provide a plan by which it could expect to
improve its reward, it broadened its search to states that
were only similar to the most recent state, rather than an
exact match. The measure of similarity between states,β,
was carefully defined so as not to require any knowledge
of the robot hardware, sensor modalities, or the nature of



its environment. The introduction ofβ did not violate the
algorithm’s model independence.

Shared members between state vectors represent exact
matches of parts of the states. The Jaccard Similarity
Index [3] is a useful measure of the extent to which the
sets of active elements in two states intersect. Alternatively,
it represents the number of dimensions of the binary sub-
space in which the active elements of the two states match
identically. Given two binary vectors,σa andσb, nθa is the
number of active elements inσa that are not active inσb,
andnθb is the number of active elements inσb that are not
active inσa. nθab is the number of elements that are active
in both. The Jaccard similarity betweenσa andσb is given
by the following:

β =
nθab

nθa + nθb + nθab

(5)

Jaccard similarity is roughly similar to theL2 norm. In
the case that the two states are completely identical (σa =
σb), both are equal to one. In the case whereσa and σb

share no common active elements, both are equal to zero. A
threshold,βc, can be set sharply delimiting what represents
a match and what does not. For the experiment shown here,
βc = 0.9.

The use of a similarity measure also implies the existence
of a distance metric, 1/β. The introduction of a distance
metric would seem to subject S-learning to some of the
limitations of other approaches cited in the introduction.
However, there is are two important distinctions in how S-
learning creates and handles the distance metric. First, the
state vector to which the distance metric is applied betrays
no information about the state itself, and thus the distance
metric is completely model-independent. Second, S-learning
uses the distance metric only as a source of guesses for
which states are similar. The similarity of any two states
is not taken as an axiom within the algorithm. As the
robot gains experience, two states that may be identified
as similar byβ may be revealed as being very different.
(For example, while two locations may seem very close in
Cartesian space, they may mean the difference between an
inmate being inside or outside a prison wall.) S-learning
would then base its future actions on its experience, rather
than on the nominal similarity of states.

2.2.6. Exploration. If no plans were expected to increase
the reward, then the robot generated a random exploratory
plan. Exploratory plans were also initiated at random inter-
vals (on average one out of sixty time steps). In addition, a
boredomcondition was met if the same state was observed
more than five times within the last fifty time steps. This also
resulted in the creation of an exploratory plan. Exploratory
plans were of random length, up to 4 actions long. Each
action was randomly generated with each of the 4 elements
of the action vector having an independent, 50% chance of

being active. Exploration provided some random variation to
S-learning’s operation, allowing it to explore its environment
and avoid getting caught in highly non-optimal behavior
patterns, such as infinitely-repeating cycles.

2.2.7. Task structure. The robot alternated between two
goals: seeking high- and low-contrast visual fields. It was
able to increase the contrast of the image by orienting itself
toward the white strip from a distance of about 20 cm. It was
able to decrease the contrast of the image by orienting itself
toward the black wall and zooming in close. A threshold
for the reward was manually set for both the high-contrast
(r = 24) and low-contrast tasks (r = 12), based on observed
values during exploration. Whenever the reward exceeded
the relevant threshold, the goal was considered reached,
and the other goal was adopted. In this manner, the robot
alternated between contrast-seeking and contrast-avoidance
tasks. The measure of the performance in each trial was the
number of time steps required to complete the task.

The robot performance was compared under two con-
ditions: 1) active learning and 2) random exploration. In
the learning condition, the robot operated according to the
algorithm and parameters described above. The robot was
allowed to operate for the life of its battery, approximately
4 hours, and the performance for each run was recorded.
In the exploration condition the robot did not make use of
past experience when selecting actions, but rather executed
random exploratory actions at each time time step.

3. Results

The block-averaged results of the experiment are shown in
Figure 4 and individual trial results are shown in Figure 5.
Initially in the learning robot, the Sequence Library was
empty and all movements were random and exploratory.
Learning gained during the first movements was used as
soon as it was applicable. The earliest runs consisted mostly
of exploration and were relatively lengthy. As the Sequence
Library became more complete and the state space was better
explored the number of time steps required to complete
eaach trial decreased rapidly.

Comparison of random exploratory behavior with learning
behavior in Figure 4 shows that robot behavior based on its
prior experience is clearly superior. The experience-based
controller completed the first 25 trials in just over an average
50 moves per trial, whereas the randomly exploring robot
required approximately five times as long. This indicates that
even the earliest portions of the robot’s experience were very
quickly applied to forming plans. While the performance
of the randomly behaving robot stayed consistently poor
(typically 250 or more movements per trial), the performance
of the learning robot continued to improve to fewer than ten
movements per trial.



number of goals achieved

n
u

m
b

e
r o

f m
o

ve
m

e
n

ts to
 a

ch
ie

ve
 e

a
ch

 g
o

a
l actively learning

randomly wandering

0

50

100

150

200

250

300

350

400

450

0 100 200 300 400 500

Figure 4. Robot performance in both exploration and
learning conditions, averaged in blocks of 25.

0 200 400 600 800 1000 1200 1400 1600 1800
1

2

3

5

10

20

30

50

100

200

300

500

1000

2000

3000

number of goals achieved

n
u

m
b

e
r o

f m
o

ve
m

e
n

ts to
 a

ch
ie

ve
 e

a
ch

 g
o

a
l

Figure 5. Robot learning performance, logarithmically
scaled.

A significant amount of variation can be seen overlying
the trends in both the random and learning robots in Figure 4.
One major source for the variation in both cases was the fact
that in some portions of the robot’s environment, goals were
easier to reach than in others. The robots’ sensory suites
were not sufficiently sophisticated to infer their position
with the enclosure, and so they were not able to identify
and maintain those most advantageous positions. When the
randomly behaving robots stumbled into them, however,
their success rates increased temporarily, until they drifted
into less fruitful positions. When learning robots found
themselves in the prime locations within the environment,
their performance increased as well, until they also moved.

Figure 5 shows an extended learning interval including
more than 1700 trials. Toward the last half of the session,
performance regularly reached as low as 3 movements

per trial. Although these were interspersed with longer
exploratory trials, they show that the robot learned how to
achieve its goals in an efficient manner. The logarithmic
scaling of the plot de-emphasizes the variation between the
very short trials and the very long trials (many longer than
100 movements). It also de-emphasizes the dramatic im-
provement in performance that occurred from the beginning
of the session to the end.

4. Discussion

This work has demonstrated the implementation and
operation of S-learning, a model-free learning and control
approach. S-learning was able to learn to control a mobile
robot in a simple environment. S-learning is capable of
addressing some dynamic reinforcement learning problems,
including the alternating high- and low-contrast tasks de-
scribed above. For other examples of S-learning solving
dynamic RL problems, see [2], [9].

The two degree-of-freedom, non-holonomic mobile robot
used here could be modeled with a small amount of effort.
However, S-learning didn’t make use of such a model, but
treated the robot and its environment as a black box. The
key aspect of S-learning’s operation is that it relied only
on the system’s prior experience, rather than ona priori
knowledge.

4.1. Limitations of S-learning

The robustness and model-independence of S-learning
comes at a price. The largest cost is in long learning times.
Significant training time, approximately 19,000 time steps,
was required to learn to control a relatively simple system.
This raises the question of when it would be appropriate
to use S-learning. In any implementation where a model
is available, the trade-off between which portions to learn
and control with S-learning and which to control with
a more conventional model-based controller is a trade-
off between learning time (short-term performance) and
robustness (long-term performance). This question can only
be answered based on the specific goals and constraints of
each implementation.

Some of the details of S-learning’s implementation are
specific to the system. One of these details is the maximum
sequence length,nmax

σ . As described previously,nmax
σ = 3

was known to be appropriate to the simulation due to its
relative simplicity. However, other systems may benefit from
larger values ofnmax

σ . Humans’ capability to remember
7 ± 2 chunks of information suggest thatnmax

σ = 7 is an
estimate with reasonable biological motivation. Similarly the
dynamics of sequence strength, underlying consolidation and
forgetting of sequences, may need to be varied to achieve
good performance on different systems. Initial tests show
that the most critical design decisions in an S-learning



implementation are the discretization of sensor data and
the assignment of reward vectors that produce desirable
behaviors. Some primary considerations when discretizing
sensors are discussed in [9], [10], but additional work is
required to fully identify the trade-offs involved.

4.2. Implications

Due to its model agnosticism, S-learning’s approach to
robot control is potentially applicable to hard problems,
such as bipedal locomotion and manipulation. In the case
of locomotion, the system model can be extremely, if not
intractably, complex, and environments may be completely
novel. In addition, extra-laboratory environments can be
harsh, and insensitivity to sensor and actuator calibration
may be desirable as well. In the case of manipulation,
mathematical modeling of physical contact is notoriously
difficult and requires a lot of computation to perform well.
It also requires high-fidelity physical modeling of the entire
system, which is not possible when handling unfamiliar
objects. The difficulties involved in modeling both of these
applications suggest that locomotion and manipulation are
two examples of hard problems to which S-learning may
provide solutions. Both problems benefit from S-learning’s
ability to let the world serve as its own model.

Acknowledgements

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-
94AL85000.

References

[1] J. Albus. A new approach to manipulator control: Cerebellar
model articulation controller (CMAC).Journal of Dynamic
Systems, Measurement and Control, 97:220–227, 1975.

[2] S. Hulet, B. Rohrer, and S. Warnick. A study in pattern as-
similation for adaptation and control. In8th Joint Conference
on Information Systems, 2005.

[3] P. Jaccard.Étude comparative de la distribution florale dans
une portion des alpes de des jura.Bulletin del la Socíet́e
Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Over-
mars. Probabalistic roadmaps for path planning in high-
dimensional configuration spaces.IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[5] S. E. Levinson.Mathematical Models for Speech Technology.
John Wiley and Sons, Chichester, England, 2005. pp. 238-
239.

[6] J. L. McKinstry, G. M. Edelman, and J. L. Krichmar. A
cerebellar model for predicitive motor control tested in a
brain-based device.Proceedings of the National Academy
of Sciences, 103(9):3387–3392, 2006.

[7] A. W. Moore and C. G. Atkeson. The parti-game algorithm
for variable resolution reinforcement learning in multidimen-
sional state-spaces.Machine Learning, 21:199–233, 1995.

[8] J. Morimoto, G. Zeglin, and C. G. Atkeson. Minimax differ-
ential dynamic programming: Application to a biped walking
robot. In Proceedings of the IEEE/RSJ Intl. Conference on
Intellignet Robots and Systems, pages 1927–1932, 2003.

[9] B. Rohrer. S-learning: A biomimetic algorithm for learning,
memory, and control in robots. InProceedings of the 3rd In-
ternational IEEE EMBS Conference on Neural Engineering,
2007.

[10] B. Rohrer. Robust performance of autonomous robots in
unstructured environments. InProceedings of the American
Nuclear Society 2nd International Joint Topical Meeting on
Emergency Preparedness and Response and Robotics and
Remote Systems, 2008.

[11] R. S. Sutton.Planning by incremental dynamic programming,
chapter Proceedings of the Eighth International Workshop on
Machine Learning, pages 353–357. Morgan Kaufmann, 1991.

[12] D. C. Tarraf, A. Megretski, and M. A. Dahleh. A framework
for robust stability of systems over finite alphabets.IEEE
Transactions on Automatic Control, June 2008. To appear
as a regular paper in the IEEE Transactions on Automatic
Control (scheduled for June 2008).

[13] Y. Tassa, T. Erez, and B. Smart.Advances in Neural
Information Processing Systems, chapter Receding horizon
differential dynamic programming, pages 1465–1472. MIT
Press, Cambridge, MA, 2008.

[14] C. J. C. H. Watkins.Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England, 1989.


